The Potential of Very High Resolution SAR Data for Land Applications

Achim Roth Science Coordinator TerraSAR-X DLR – German Remote Sensing Data Center

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Radar characteristics

- → All weather observation capability
- → Active system
- → Receives echoes
- ✓ Visualization of radar echoes

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

What does the radar measure?

Brightness of features in radar imagery depends on portion of energy that is backscattered to the SAR system

Radar transmits a pulse (traveling velocity is equal to speed of light)

Some of the energy is reflected back to the sensor. The radar measures the radar backscatter σ_0 (sigma naught or sigma zero)

Backscatter properties

- → Surface roughness
- → Dielectric properties
- ✓ Imaging and surface geometry

Image properties: Target interaction

- Surface roughness
 Smooth: height variation much smaller than signal wavelength: specular
 Rough: height variations approach size of wavelength: diffuse
- ✓ Function of wavelength and incidence angle

- A: double bounce (specular)
- **B:** direct reflection (specular)
- **C:** specular reflection
- D: diffuse scattering with dominating direction

E: diffuse scattering (volume)

- F: combination D & A
- G: multiple double bounce
- (H: shadow)

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Spotlight Image: Teotihuacán

Flooding of White River Area, Arkansas March 2008

Augusta (Arkansas, USA), Source: Google Earth

Flooding of White River Area, Arkansas March 2008

TerraSAR-X StripMap Image HH pol, March 27, 2008

Flooding of White River Area, Arkansas March 2008

TerraSAR-X StripMap Image HH pol - water bodies

Flooding of White River National Wildlife Refuge, Arkansas - March 2008

Source: http://www.fws.gov/whiteriver/flood%20waters%20page.htm

Flooding of White River Area, Arkansas March 2008

TerraSAR-X StripMap Image HH pol - inundated forest areas

Flooding of White River Area, Arkansas March 2008

TerraSAR-X StripMap Image HH pol - water bodies & inundated forest areas

Flooding of White River Area, Arkansas March 2008

DEM from SRTM

TSX-Spotlight: Ebro River Delta, Spain January 2, 2008

TSX-HR-Spotlight: Malaysia December 30, 2007

TSX-HR-Spotlight: Munich February 6, 2008

Speckle-Analysis and Filtering

Generation of color composites

SAR-intensity (TerraSAR-X)

Speckle-divergence

composite intensity - divergence

Image Classification

Generation of built-up area mask

Built-up area

Image Classification: Istanbul

Basic land use classes

TerraSAR-X StripMap image

Tokyo @ 300 MHz High Resolution Spotlight B=158 m, 43.8 m/fringe

Stripmap Mode: Salar de Uyuni & Mt. Tunupa, Bolivia

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

First Processed TSX Scene – First Moving Objects

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Data: L1B_RE_DT00013

Imaging and Velocity Estimation of a Moving Ship

Azimuth displacement	∆az	260 m
Beam velocity on ground	V _b	7010 m/s
Slant range distance	R_0	796 km
Radar Look angle	θ	52 deg
Ship heading angle	α	7 deg

$$v_{ship} = -\frac{\Delta az \cdot v_b}{R_0 \cdot \sin \theta \cdot \cos \alpha}$$

 $v_{ship} = 10.5 \ km / h$

Positive azimuth displacement \rightarrow Ship moved towards Radar

Illumination ------

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Data: L1B_MGD_RE_DT00013

Imaging and Velocity Estimation of a Moving Train

Azimuth displacement	∆az	-779 m
Beam velocity on ground	V _b	7010 m/s
Slant range distance	R_0	791 km
Radar Look angle	θ	52 deg
Train heading angle	α	38 deg

$$v_{train} = 40.6 \ km / h$$

Negative azimuth displacement \rightarrow Train moved away from Radar

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Data: L1B_MGD_RE_DT00013

Automatically Detected Vehicles in TSX AS Mode Data

Ground range approx. 14 km

	Deutsches Zentrum
' DLK	fur Luit- und Kaumanrt e.v.
	in der Helmholtz-Gemeinschaft

Total number of detections:	38
Detected vehicles driving away from Radar (West):	23
Detected vehicles driving towards Radar (East):	15

Comparison of Results with Ground Truth Observations

Flight direction

Illumination —

B: Comparison with floating car measurement

Floating car average velocity:

86 km/h

82 km/h

Highest incidence of detected velocities for direction of floating car:

→

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

A: Comparison with traffic at SAR imaging time of camera bridge

C2

TSX-Spotlight: Tehachapi Loop, California December 30, 2007 & November 16, 2007

Thank you for your kind attention

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Scattering mechanisms from vegetation, soil and ice

scattering from canopy

Courtesy: NASA

volume scattering

surface scattering

VEGETATION

surface scattering

volume scattering

scattering from subsurface horizon

surface scattering

